BLSTM neural networks for speech driven head motion synthesis

نویسندگان

  • Chuang Ding
  • Pengcheng Zhu
  • Lei Xie
چکیده

Head motion naturally occurs in synchrony with speech and carries important intention, attitude and emotion factors. This paper aims to synthesize head motions from natural speech for talking avatar applications. Specifically, we study the feasibility of learning speech-to-head-motion regression models by two types of popular neural networks, i.e., feed-forward and bidirectional long short-term memory (BLSTM). We discover that the BLSTM networks apparently outperform the feedforward ones in this task because of their capacity of learning long-range speech dynamics. More interestingly, we observe that stacking different networks, i.e., inserting a feed-forward layer into two BLSTM layers, achieves the best performance. Subjective evaluation shows that this hybrid network can produce more plausible head motions from speech.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bidirectional LSTM Networks Employing Stacked Bottleneck Features for Expressive Speech-Driven Head Motion Synthesis

Previous work in speech-driven head motion synthesis is centred around Hidden Markov Model (HMM) based methods and data that does not show a large variability of expressiveness in both speech and motion. When using expressive data, these systems often fail to produce satisfactory results. Recent studies have shown that using deep neural networks (DNNs) results in a better synthesis of head moti...

متن کامل

Speech-driven head motion synthesis using neural networks

This paper presents a neural network approach for speech-driven head motion synthesis, which can automatically predict a speaker’s head movement from his/her speech. Specifically, we realize speech-to-head-motion mapping by learning a multi-layer perceptron from audio-visual broadcast news data. First, we show that a generatively pre-trained neural network significantly outperforms a randomly i...

متن کامل

TTS synthesis with bidirectional LSTM based recurrent neural networks

Feed-forward, Deep neural networks (DNN)-based text-tospeech (TTS) systems have been recently shown to outperform decision-tree clustered context-dependent HMM TTS systems [1, 4]. However, the long time span contextual effect in a speech utterance is still not easy to accommodate, due to the intrinsic, feed-forward nature in DNN-based modeling. Also, to synthesize a smooth speech trajectory, th...

متن کامل

Articulatory movement prediction using deep bidirectional long short-term memory based recurrent neural networks and word/phone embeddings

Automatic prediction of articulatory movements from speech or text can be beneficial for many applications such as speech recognition and synthesis. A recent approach has reported stateof-the-art performance in speech-to-articulatory prediction using feed forward neural networks. In this paper, we investigate the feasibility of using bidirectional long short-term memory based recurrent neural n...

متن کامل

RNN-BLSTM Based Multi-Pitch Estimation

Multi-pitch estimation is critical in many applications, including computational auditory scene analysis (CASA), speech enhancement/separation and mixed speech analysis; however, despite much effort, it remains a challenging problem. This paper uses the PEFAC algorithm to extract features and proposes the use of recurrent neural networks with bidirectional Long ShortTerm Memory (RNN-BLSTM) to m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015